
Multinomial models

The multinomial distribution is a generalization of the
binomial distribution, for categorical variables with more
than two response types.  In a multinomial random
experiment, each single trial results in one of  outcomes.5
For instance, sampling with replacement from a population
with  types of individuals (like a bowl containing balls of5
5 different colors) is a multinomial random experiment.

   types5

        sample    æ 8

                       with replacement   æ

     æ    

The multinomial distribution is a probability model for the
counts resulting from such an experiment.  Let:

1" œ æproportion of type 1 ( ) in the bowl
1# œ proportion of type 2 ( ) in the bowl
       ã
15 œ 5proportion of type  ( ) in the bowl

The 's are  (parameters) in the distribution, and14 constants
they sum to 1:

1 1 1" # 5 â œ 1.



A multinomial experiment occurs when we independently
sample  objects from the bowl with replacement, and8
record the type of each one.  Let:

] œ æ" number of type 1 ( ) in the sample
] œ# number of type 2 ( ) in the  sample
       ã
] œ 55 number of type  ( ) in the  sample

The counts , , ,  are .  They] ] á ]" # 5 random variables
take integer values between 0 and  inclusive, but they8
must also add to :8

]  ] â ] œ 8" # 5 .

The 's are :  the value of one affects the others.]4 dependent
The multinomial distribution is the multivariate (or joint)
probability distribution for the random variables , , ,] ] á" #

]5:

T ] œ C ] œ C â ] œ C " " # # 5 5 and  and  and 

   ,œ â8x
C xC xâC x " #

C C C
5" # 5

" # 51 1 1

where , , ...,  are any nonnegative integers that add toC C C" # 8

8 (all possible outcomes).  We write

] ] á ] 8 á" # 5 " # 5, , ,  ~ multinomial( , , , , ) .1 1 1



The binomial distribution is a special case corresponding to
5 œ # ] œ 8  ].  In this case, the number of failures is .# "

Example.  In political polling, each voter selected for the
sample is categorized into one of  mutually exclusive5
categories.  For instance, in a random sample of  voters in8
the USA,

] œ" # democrats,
] œ# # republicans,
] œ$ # independents (no party),
] œ4 # “other” (libertarians, greens, etc).

The counts , , ,  are random variables, in that if] ] ] ]" # $ 4

the poll were to be repeated (a new sample of  voters8
selected) the counts would likely be somewhat different.
Note that political polling and other such surveys are
generally done by sampling without replacement.
However, the multinomial model will be a good
approximation to the distribution of the counts provided the
changes in the proportions in the population (the 's) due14

to sampling are negligible.  (The exact distribution of the
counts for sampling without replacement is called the
multivariate hypergeometric distribution).

Properties of the multinomial  distribution

E ] œ 84 41

V   ] œ 8 " 4 4 41 1



Cov         ( ] ] œ  3 Á 4Ñ3 4 3 41 1

Also, an important property of the multinomial distribution
is that any subgroup of  the 's, conditional on their sum,]4

has a multinomial distribution.  For instance,

] ] ] l Ð]  ]  ] œ 7Ñ µ" # $ " # $, , 

                               multinomial( , , , ) ,7 : : :" # $

where  .: œ Î  3 3 " # $1 1 1 1 
Another important property is that any subgroup of the 's]4

can be pooled (summed) into one count, and the resulting
collection of counts has a multinomial distribution, with the
proportion for the new pooled category being the sum of
the original probabilities for the counts being pooled.  A
special case of this property is that the marginal distribution
of a single count is binomial:

] µ 84 4binomial( , ) .1

In this case, the number of failures is the sum of all the
counts for the other categories.

Saturated parameter model

The multinomial distribution is called “saturated” if all of
the population proportions , , ,  have unknown1 1 1" # 5á
values.  This translates to  free unknown parameters,5  "



because knowing the values of  of the proportions5  "
provides the value of the remaining proportion due to the
constraint that the proportions sum to ."

Suppose a multinomial experiment has been conducted.
The data are the resulting counts, , , ..., , and theC C C" # 5

“sample size” is the number of trials .  The likelihood8
function for the unknown parameters is

P á œ â 1 1 1 1 1 1" # 5
8x

C xC xâC x " #
C C C

5, , ,  ,
" # 5

" # 5

and the log-likelihood is

log log log  .    P œ  C8x
C xC xâC x

4œ"

5

4 4
" # 5

1

The maximum likelihood (ML) estimates , , ...,  are1 1 1s s s" # 5

the values of , , ,  that jointly maximize  or1 1 1" # 5á P
log , subject to the constraint that  P   á 1 1 1" # 5

œ ".  The constrained maximization has a symbolic
solution that can be derived, for instance, with the
Lagrange multiplier technique from calculus.  The resulting
solution is intuitive;  the ML estimates are simply the
sample proportions of the categories:

1s œ4
C
8
4  .

The ML estimate for the mean of  is found from :] s4 41

E  .s ] œ 8 œ Cs 4 4 41



Now E  is the prediction for a new value of  under thes ] ] 4 4

model, and the predictions fit all the observed counts C4
perfectly.  The model has as many unknown parameters as
free data points, hence the characterization of the model as
“saturated.”

One must be careful of terminology with the multinomial
model when speaking about “sample size.”  The number of
raw observations (each a single event, categorized into one
of  categories) is .  The number of counts is , of which5 8 5
5  " are nonsingular random variables.

Reduced-parameter models

The saturated multinomial model has 1 unknown free5 
parameters for describing  free counts.  An5  "
interesting, and scientifically useful, class of multinomial
models arise when the 's are constructed as functions of14

fewer underlying parameters.  Many different functions
arise out of various scientific mechanisms.

Examples of reduced-parameter models

1.  Hardy-Weinberg equilibrium

Genes of two types (alleles), denoted A, a, present in a
population at a location (locus) on a chromosome pair.
Possible genotypes are AA, Aa, aa.



Bucket of gametes:

                          A          A        a
                              a  A         a        A
   a  A        A    a    A     A

Gene proportions:   proportion of A: œ
    1 proportion of a  : œ

Random mating with no selection is like drawing two
alleles at random (with replacement) from the bucket to
make a new individual:

 AAT œ :  #

 Aa 2 1    “Hardy-Weinberg proportions”T œ :  :   
 aa 1T œ  :   #
Draw sample of  individuals in population;  determine8
their genotypes (AA, Aa, or aa).  #AA, #Aa,] œ ] œ" #

] œ$ #aa in sample.

Model:   , ,   multinomial , , ] ] ] µ 8ß" # $ " # $ 1 1 1

where 1"
#œ :

  2 11# œ :  : 
  11$

#œ  : 
This is a multinomial model with one unknown parameter
given by .:



Question for thought:  suppose the counts resulting from
sampling  individuals are denoted by , , .  What is8 C C C" # $

the ML estimate for ?:

2.  Bird-banding

Capture (usually by mist netting) and band  adult birds,8
and release them back into the wild.

 prob. of surviving a given yr< œ
 prob. that band is found & returned (given the= œ
  bird dies) in the year of death

Study lasts for three years;  # band returns in first yr,] œ"

 #band returns in second yr, # band returns] œ ] œ# $

 in third yr, # birds with unreturned bands.] œ%

Model:  , , ,  multinomial , , , , ] ] ] ] µ 8" # $ % " # $ % 1 1 1 1

 11" œ  < = 
 11# œ <  < = 
 11$

#œ <  < = 
 1 1 1 11%

#œ   < =  <  < =  <  < =      
Model has two unknown parameters  and < =

3.  Fitting a probability distribution to grouped data

The multinomial distribution is used for fitting probability
distributions to data grouped into frequency counts.
Suppose the set of real numbers is separated into 5



intervals, with boundaries of known values given by  , ,= =" #

..., .  The boundaries are typically chosen by the=5"

investigator, but occasionally the boundaries are given by
the scientific problem.

As an example, suppose , , ...,  represent a random\ \ \" # 8

sample drawn from a from a normal ,  distribution. . 5#

Suppose also that these raw observations are grouped into
interval categories, with the frequency counts represented
by ] ] á ]" # 5, , , :

] œ ∞ =" "# of observations in ,  
] œ = =# " ## of observations in ,  
] œ = =$ # $# of observations in ,  
 ã
] œ = =5" 5# 5"# of observations in ,  
] œ = ∞5 5"# of observations in ,  
The probabilities corresponding to these frequency counts
are given by areas under a normal ,  curve: . 5#

1" "œ ∞ =area under normal curve from  to 
1# " #œ = =area under normal curve from  to 
 ã
15 5"œ = ∞area under normal curve from  to 

The multinomial model for the 's has  unknown]4 two
parameters:   and .. 5#

Notes on picking boundaries:  Setting the boundaries at
values that cannot actually occur in the sample avoids the



need for specifying rules for categorizing an observation
that lands on a border.   For instance, one can define
boundary values that have a greater number of decimal
places than the precision of the raw observations.  For
discrete distributions defined on the integers, one can set
the boundaries at half-integer values.  Also, for adequate
asymptotics (for the parameter estimates and the chisquare
goodness of fit test), the intervals should be formed so as
not to have low expected counts.  The intervals do not have
to be equal in width;  rather, intervals roughly equal in
expected frequency are better.  Finally, to assure that the
frequency counts have a multinomial distribution, the
intervals should partition the entire sample space, so that
every potential raw observation can be categorized into one
of  mutually exclusive categories.5

Maximum likelihood estimation for reduced parameter
multinomial models

We write the general reduced parameter model as

] ] á ] 8 á" # 5 " # 5, , ,  ~ multinomial( , , , , ) ,1 1 1

where the 's can be represented as functions of fewer14

underlying parameters (let's call the underlying parameters
) ) )" # 6, , ..., , with ):6 Ÿ 5  "

1 ) ) )" " " # 6œ 1  , , ..., 
1 ) ) )# # " # 6œ 1  , , ..., 
   ã
1 ) ) )5 5 " # 6œ 1  , , ..., 



The data are the counts resulting from aC C C" # 5, , ...,  
sample of size .  The ML estimates of , , ...,  are the8 ) ) )" # 6

values, say , , ..., , that jointly maximize the) ) )s s s
" # 6

multinomial log-likelihood function given by

log log log    P œ  C 18x
C xC xâC x

4œ"

5

4 4
" # 5

 ) ) )" # 6, , ...,  .

Numerical maximization is required for all but the simplest
applications (such as the genetic H-W equilibrium, above).
Interestingly, many computer packages for nonlinear least
squares (SAS PROC NLIN, etc.) can be “tricked” into
maximizing a multinomial likelihood instead of minimizing
a sum of squares.  The trick uses the counts C C C" # 5, , ...,  as
the observations of the “response variable” and the
corresponding expected counts given by  E ] œ4

814 ) ) )" # 6, , ..., , , , ...,  as the regression model to4 œ " # 5
be fit.  The ordinary least squares estimates are  the MLnot
estimates for the multinomial;  the trick is to weight each
observation by , , ...,  and update the value"Î  814 ) ) )" # 6

of the weight with the new parameter values each iteration
of the Gauss-Newton sum of squares algorithm.  The
“_WEIGHT_” statement in SAS PROC NLIN was
designed for such use.  Because the multinomial expected
values typically are functionally different for each
observation, the regression model form has to be specified
separately for each observation by means of a series of “IF”
statements.  This “iteratively reweighted least squares”
algorithm converges to the ML estimates for the



multinomial model, and the corresponding “weighted sum
of squares” is the Pearson chisquare goodness of fit
statistic.  Furthermore, if the asymptotic variance-
covariance matrix from the nonlinear regression is
evaluated using (where  is the variance parameter5 5# #œ "
in the nonlinear regression), the result is the correct
asymptotic variance-covariance matrix for the parameters
of the multinomial model that arise from the Fisher
information matrix.  The “SIGSQ ” option in the PROCœ "
NLIN statement of SAS accomplishes the appropriate
scaling of the variance covariance matrix for multinomial
models.

Goodness of fit test for a reduced parameter
multinomial model

The multinomial goodness of fit test is a statistical test of a
specified reduced parameter model against a saturated
model.  The null hypothesis is a reduced parameter
multinomial model for describing the 's, that is, the 's]4 41
can be represented in terms of fewer underlying parameters
( , , ..., ):) ) )" # 6

 H : , , ..., ! " " " # 61 ) ) )œ 1  
  , , ..., 1 ) ) )# # " # 6œ 1  
   ã
  , , ..., 1 ) ) )5 5 " # 6œ 1  
Note:  in goodness of fit tests, the null hypothesis is often
the “research model” of interest.



The alternative hypothesis is that a more complex,
unspecified multinomial model is necessary to describe the
] 5 4 " # 5"'s, that is, all 1 free parameters , , ...,  are1 1 1
needed to describe the data adequately:

 H : " " "1 1œ
  1 1# #œ
   ã
  1 15" 5"œ

Here H  is the ordinary saturated multinomial.  In situations1

where the null model is the research hypothesis (i.e. the
model for which the researcher seeks to convince a skeptic
of its merits), the alternative hypothesis becomes the
skeptic's hypothesis.  The skeptic would claim that the null
hypothesis model is too simple a mechanism for producing
the data.

The data are the counts , , ..., .  To perform theC C C" # 5

statistical test, one must calculate ML estimates for the null
hypothesis model (usually using numerical maximization).
The resulting maximized likelihood value, , is evaluatedPs!

as

P œs
!

8x
C xC xâC x " #

C C C
5" # 5

" # 51 1 1~ ~ ~  .â

where , , ..., .~1 ) ) )4 4 " # 6œ 1 s s s 



Similarly, the likelihood evaluated at the ML estimates for
the alternative hypothesis is

P œs
"

8x
C xC xâC x " #

C C C
5" # 5

" # 51 1 1s s sâ

where .  The likelihood ratio statistic for testing H1s œ4 !
C
8
4

versus H  becomes"

K œ # Ps

Ps
2 log  . !

"

For these multinomial models, the likelihood ratio statistic
algebraically reduces to a simpler form, requiring
calculation only of the ML estimates and expected values
under H .  Let    (ML-estimated expected value~

! 4 4I œ 8s 1
of  under the null hypothesis).  The likelihood ratio]4

goodness of fit statistic for the multinomial reduces to

K œ C#

4œ"

5

4
C

Is
2 log  .  4

4

This is in the form 2  observed log .D  observed
estimated expected

Also, one can show by asymptotic expansion that

K ¸ œ \# #

4œ"

5 C Is

Is
  4 4

#

4

 ,

that is,  (likelihood ratio statistic) and Pearson'sK#

chisquare statistic are asymptotically similar.



If the data arise from the null hypothesis model, then K#

and  both have approximate chisquare distributions with\#

5  "  6 df  (# parameters estimated in alternative model
minus # parameters estimated in null model).  One rejects
H  in favor of H  if , where the chisquare! "

# #K   ;α
percentile corresponds to 1 df.  One concludes that5  6 
the null model “fits” if  .K # #;α

In ordinary analysis of variance tests, the skeptic's
hypothesis is usually the null model and the research
hypothesis is the alternative.  In goodness of fit tests, the
null/alternative configuration of the skeptic's and research
hypotheses is often reversed.  As such, support for the
research hypothesis in goodness of fit takes the form of
“failure to reject the null hypothesis” and is thereby a
weaker statement than rejection of the null in favor of the
alternative.  Acceptance of goodness of fit means only that
the data are a plausible realization of the null model;  it
does not mean that the null model (or some approximation
thereof) necessarily generated the data.

Goodness of fit is an important ingredient of model
evaluation, but it is not the only ingredient.  A statistical
model ultimately is a scientific hypothesis that purports to
explain how numerical observations arise, and evaluating
the model's reliability as a predictive tool and as a
supporting strand in a web of other scientific hypotheses
requires further evidence.  One might think of goodness of
fit as scientifically necessary, but not scientifically
sufficient.



Examples of goodness of fit tests

1.  Are human blood types in H-W proportions?

3 alleles  A, B, O  with proportions , ,  in population+ , 9
(where ;  there are  unknown parameters)+  ,  9 œ " two

genotypes    phenotypes  frequencies (H-W)

   type A   2
AA
AO  1"

#œ +  +9

   type B   2
BB
BO  1#

#œ ,  ,9

 AB   type AB   21$ œ +,

 OO   type O   1%
#œ 9

Data (from Rao CR. 1973. Linear Statistical Inference and
its Applications.  Wiley):  182,  60,  17,C œ C œ C œ" # $

C œ 8 œ% 176,  435

ML estimates under H :  H-W proportions!

(computer maximization of ):P!

 0.2644485+ œs

 0.09319721, œs

 0.64235439 œs

log  9.096694 P œ s
!



              observed

 2 178.20741 182~I œ 8 œ 8 +  +9 œs s ss" "
#

1  
 2 55.86139   60~I œ 8 œ 8 ,  ,9 œs s ss# #

#
1  

 2 21.44190       17~I œ 8 œ 8 +, œs ss$ $1  
 179.48931   176~I œ 8 œ 8 9 œs s% %

#
1  

 2 log 1.438994K œ C œ#

4œ"

5

4
C

Is
  4

4

 df 4 2 1 1œ   œ
 0.2303022: œ

 1.375346 \ œ#

 0.05 so do not reject H:  !

#  R program to calculate maximum likelihood (ML) estimates for parameters
#  a b and o (allele frequencies) in the multinomial model for
#  Hardy-Weinberg proportions in human blood types.  The model is
#  Y1,Y2,Y3,Y4 ~ multinomial(n,p1,p2,p3,p4) where
#  p1=a+a + 2*a*o  blood type A proportion
#  p2=b*b + 2*b*o   blood type B proportion
#  p3=2*a*b             blood type AB proportion
#  p4=o*o                 blood type O proportion
#
#  Here 0<a<1, 0<b<1, o=1-a-b.

#  Count frequencies are entered into the vector yy here.
yy=c(182,60,17,176);

#  Data in example are from:  Rao, CR 1973. Linear statistical inference and
#  its applications.  Wiley.



#  Set initial patameter values here.
a0=.33;
b0=.33;

#  ML objective function "negloglike.ml" is negative of log-likelihood;
#  the Nelder-Mead optimization routine in R, "optim", is a minimization
#  routine.  The two function arguments are:  theta = vector of
#  parameters (transformed to real line), ys = vector of frequencies.

negloglike.ml=function(theta,ys)
{
   a=exp(-exp(theta[1]));     #  Constrains 0 < a < 1.
   b=exp(-exp(theta[2]));     #  Constrains 0 < b < 1.
   o=1-a-b;
   n=sum(ys);
   k=length(ys);
   p=c( a*a+2*a*o,
        b*b+2*b*o,
        2*a*b,
        o*o );              #  H-W model for the probabilities.

   ofn=-sum(ys*log(p));     #  No need to calculate all the factorials.
   return(ofn);
}

# The ML estimates.
MULTML=optim(par=c(log(-log(a0)),log(-log(b0))),
   negloglike.ml,NULL,method="Nelder-Mead",ys=yy);
reslts=c(exp(-exp(MULTML$par[1])),exp(-exp(MULTML$par[2])),-MULTML$val);
a.ml=reslts[1];            # These are the ML estimates.
b.ml=reslts[2];            #          --
o.ml=1-a.ml-b.ml;      #          --

nn=sum(yy);
loglike.ml=reslts[3]+lfactorial(nn)-sum(lfactorial(yy));

# Calculate expected values, LR statistic, etc.
pp=c( a.ml*a.ml+2*a.ml*o.ml,
        b.ml*b.ml+2*b.ml*o.ml,
        2*a.ml*b.ml,



        o.ml*o.ml );
EE=nn*pp;
y1=yy;
y1[y1==0]=1;                             # Guard against log(0) in G-squared.
Gsq=2*sum(yy*log(y1/EE));   # G-squared goodness of fit statistic.
pval=1-pchisq(Gsq,1);

#  Print the results.
a.ml;
b.ml;
o.ml;
loglike.ml;
Gsq;
pval;
cbind(EE,yy);

2.  Do lodgepole pines have a Poisson spatial distribution?

100 quadrats placed at random in a lodgepole pine forest.
\ œ # trees in a quadrat.

Poisson model:  P , , , , ... \ œ B œ B œ ! " #/
Bx

 B--

Frequency counts:
] œ !" # quadrats with  trees
] œ "# # quadrats with  tree
] œ #$ # quadrats with  trees
       ã
] œ 5  #5" # quadrats with  trees
] œ 5  "5 # quadrats with  or greater trees



Multinomial distribution of frequency counts:

] ] ] µ 8" # 5 " # 5, , ..., multinomial( , , , ..., )1 1 1

where

1 -" "
/
!xœ \ œ ! œ œ 1P     ( )    !--

1 -# #
/
"xœ \ œ " œ œ 1P     (   etc.)    "--

1$
/
#xœ \ œ # œP   #--

       ã
15"

/
5# xœ \ œ 5  # œP   5#-- 

1 1 1 15 " # 5"œ \   5  " œ "   âP   
# trees per frequency  estimated expected 

quadrat ( ) count ( )  frequency ( )B C 81 s
4 4 -

 0     7      5.728991
 1   16    16.382799
 2   20    23.424378
 3   24    22.328357
 4   17    15.962714
 5     9      9.129494
 6     5      4.351164
  7     2      2.692104 

-s œ 2.859631

log 13.97714 P œ s
!

K œ : œ# 1.276895 0.2584772
\ œ : œ# 1.260605 0.2615366



#  R program to calculate maximum likelihood (ML) estimates for parameter
#  in the Poisson distribution using a multinomial likelihood for goodness of
#  fit test.
#  Here P[X=x] = exp(-lambda)(lambda^x)/(x!), x=0,1,2,... .
#  Data are pooled frequency counts:
#               y1 = #{X=0}, y2 = #{X=1},..., yk = #{X>=(k-1)}.

#  Count frequencies are entered into the vector yy here.  The last frequency
#  is the pooled tail counts.
yy=c(7,16,20,24,17,9,5,2);

#  Initial patameter value is calculated from the approximate sample mean.
kk=length(yy);
nn=sum(yy);
xx=0:(kk-1);
lambda0=sum(xx*yy)/nn;

#  ML objective function "negloglike.ml" is negative of log-likelihood;
#  the optimization routine in R, "optim", is a minimization
#  routine.  The two function arguments are:  theta = parameter
#  (transformed to real line), ys = vector of frequencies.

negloglike.ml=function(theta,ys)
{
   lambda=exp(theta);     #  Constrains 0 < lambda.
   k=length(ys);
   x=0:(k-1);
   x1=x[1:(k-1)];
   p=rep(0,k);
   p[1:(k-1)]=exp(-lambda+x1*log(lambda)-lfactorial(x1));
   p[k]=1-sum(p[1:(k-1)]);
   ofn=-sum(ys*log(p));     #  No need to calculate all the factorials.
   return(ofn);
}

# The ML estimate.
MULTML=optim(par=log(lambda0),
   negloglike.ml,NULL,method="BFGS",ys=yy);  #  Nelder-Mead algorithm is not
                                                                                   #  reliable for 1-D problems.
reslts=c(exp(MULTML$par[1]),-MULTML$val);



lambda.ml=reslts[1];            # This is the ML estimate.
nn=sum(yy);
loglike.ml=reslts[2]+lfactorial(nn)-sum(lfactorial(yy));   #  Log-likelihood.

# Calculate expected values, LR statistic, etc.
xx1=xx[1:(kk-1)];
pp=rep(0,kk);
pp[1:(kk-1)]=exp(-lambda.ml+xx1*log(lambda.ml)-lfactorial(xx1));
pp[kk]=1-sum(pp[1:(kk-1)]);
EE=nn*pp;
y1=yy;
y1[y1==0]=1;                            # Guard against log(0) in G-squared.
Gsq=2*sum(yy*log(y1/EE));  # G-squared goodness of fit statistic.
pvalG=1-pchisq(Gsq,1);         # p-value (chisquare distribution) for G-squared.
Xsq=sum((yy-EE)^2/EE);      # Pearson goodness of fit statistic.
pvalX=1-pchisq(Xsq,1);         # p-value (chisquare distribution) for Pearson.

#  Print the results.
lambda.ml;
loglike.ml;
Gsq;
pvalG;
Xsq;
pvalX;
cbind(EE,yy);

Confidence intervals

1.  .  The curvature of the log-Wald confidence intervals
likelihood function near its peak describes how well the
data distinguish among different nearby parameter values.
If the log-likelihood function is a narrow, steep peak, then
curvature is large and the data are providing good
information for estimating the parameter values.  If the log-
likelihood function slopes down from its peak only gently,
a large range of parameter values provide a log-likelihood
value almost as high as that of the ML estimate, and the



data do not provide good information for parameter
estimation.

Commonly used measures of the quality of estimation are
based on the log-likelihood curvature.  The log-likelihood
curvature is defined by the Hessian matrix of second
derivatives.  The element in the th row and the th3 7
column of the Hessian matrix is:

` P
` ` 1 ` ` ` `

4œ"

5
C ` 1 C `1 `1

1

#

3 7 4 3 7 3 7

4 4 4 4 4
#

#
4

log           )
) ) ) ) ) ) )

) ) )

)
œ      .

Here ) œ ( , , ..., ).  In hypothetically repeated) ) )" # 6

samples, log  and its derivatives are random variables.P )
In particular, the elements of the Hessian matrix are linear
functions of the mulinomial observations , , ..., , andC C C" # 5

their expected  values can be found by  substituting the
expected values , , ..., of the81 81 81" # 5     ) ) )
observations   The element in the th row and the thÞ 3 4
column in the matrix of expected values of the second
derivatives is

E  .      ` P
` ` 1 ` `

4œ"

5
" `1 `1#

3 7 4 3 7

4 4log        )
) ) ) ) )

) )
œ  8

The expression results from the  fact that D )1 œ "4 
thereby producing .D ) ) )` 1 Î ` ` œ !#

4 3 7   
The essential curvature of the log-likelihood near its
maximum is negative; a measure of the amount of



information in the data toward parameter estimation is
better scaled in the positive direction.  Such a measure of
estimation quality is provided by the “Fisher information
matrix,” consisting of the expected values of the Hessian
matrix elements multiplied by : "

M œ    ) E ` P
` `

#

3 7

log  )
) ) .

An important result from statistical theory states that the
ML parameter estimates in  ( , , ..., ))s œ ) ) )s s s

" # 6  have, under
hypothetical repeated sampling, an asymptotic multivariate
normal distribution with mean vector  and variance-)
covariance matrix given by

Z œ M    ) ) ".

Asymptotically valid confidence intervals, termed ”Wald
intervals,” are constructed with this multivariate normal
distribution.  The variance covariance matrix can beZ  )  
estimated by substituting any statistically consistent
estimate of the Fisher information matrix M ) .  One such

estimate is simply the ML estimate .  AlternativelyM s )
the information matrix can be estimated by using the
Hessian matrix itself.  The Hessian evaluated at the ML
estimates ( , , ..., ) and multiplied by  is)s œ ) ) )s s s  "" # 6

called the “observed information matrix”:
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Either  or  are statistically consistent      M N) )s s
" "

estimates of .Z  )
A Wald interval is an asymptotic % confidence"!!Ð"  Ñα
interval for  formed by)3

)s „ D @s3 33Î#α
  ,

where  is the th percentile of a standardD "!! "  Î#αÎ#   α

normal distribution and  is the th element in the main@ 3s33

diagonal of the estimated variance-covariance matrix .Zs  )
In practice, sample sizes are frequently not large enough to
attain “asymptopia,” and actual coverage probabilities of
asymptotic confidence intervals can be considerably
different from the claimed probabilities.  Wald intervals are
known to be often too small.  Simulations suggest that

intervals using the observed information matrix   tendN )s
to have slightly better properties than those using the ML

Fisher infomation matrix M s ) , but actual details differ

from model to  model.

2.  .  The key problem forBootstrap confidence intervals
constricting a confidence interval for a parameter  is to)3



estimate how variable its ML estimate  is under)̂3
hypothetical repeated sampling (the so-called sampling

distribution of ).  Bootstrapping is a straightforward,)̂3
computer-intensive appproach to “estimating the variability
of estimation,” and is the statistical version of “pulling
yourself up by your bootstraps.”  The basic principle is
easy:  obtain an estimate of the model, simulate thousands
of new data sets from the estimated model, and refit the
model to each  of the new data sets.  The resulting
collection of thousands of parameter values forms a
statistically consistent estimate of the sampling distribution.

The estimated model in the present context is the
multinomial distribution evaluated at the ML parameter
estimates .  One computer-generates  multinomial data)s ,
sets (say, ) from the estimated model and re-, œ "!ß !!!
calculates ML parameter estimates for each data set.  Each
bootstrap data set should have the same sample size as the
original data.  The resulting bootstrap parameter estimates

) ) )s s sÐ"Ñ Ð#Ñ Ð,Ñ
, , ...,  can be treated as a huge sample from the

sampling distribution of  .  An asymptotic 95% confidence)s

interval for , for instance, is given by the empirical 2.5th)3
and 97.5th percentiles of the bootstrap estimates of .)3

3.  .  A confidenceProfile likelihood confidence intervals
interval can be constructed by inverting a two-sided
hypothesis test concerning the parameter in question.  The
null hypothesis is that the parameter is equal to a constant
known value:
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The alternative hypothesis is that the parameter is an
unknown constant:

H :   ." 3 3!) )Á

A valid ( % confidence interval is the set of all"!! "  Ñα
values of  for which the null hypothesis would not be)3!
rejected, using a significance level of .α

A profile likelihood confidence interval for  uses the)3
generalized likelihood ratio test and the asymptotic
chisquare distribution of the test statistic to form the
confidence interval.  For a range of fixed values of , one)3
maximizes the log-likelihood with respect to the remaining
unknown parameters.  Usually the process requires many
numerical  maximizations, one for each new value of .)3
Typically the maximized values of the log-likelihood are
plotted versus the corresponding  values, ideally resulting)3
in a unimodal curve, like a rounded mountain.  The summit
of the curve represents log , the log-likelihoodPs"

maximized under the alternative hypothesis (full ML
estimates of all parameters including ).  The confidence)3
interval is all the  values for which the maximized log-)3
likelihood is above a certain altitude on the peak.  The
threshold is given by the asymptotic chisquare distribution
of the likelihood ratio test statistic.  A valid asymptotic
"!!Ð"  Ñα )% confidence interval is the set of  values for3

which
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where the chisquare distribution has 1 df.  For example, a
*&% confidence interval is the set of  values for which the)3
height of the log curve is within a vertical distance ofPs!

;#
αÎ# œ $Þ)%Î# œ "Þ*#  from the summit.

Beyond its use for constructing confidence intervals, a
profile log-likelihood plot is a recommended ingredient of
model evaluation.  A nearly flat or multimodal profile can
warn of estimability problems;  different sets of parameters
are producing similarly high log-likelihoods.  An ideal
profile looks parabolic.  Many tough-to-estimate
parameters (such as population size in mark recapture
models) produce asymmetric profiles, with a steep decline
on one side and gentle decline on the other, leading to
confidence intervals that are highly asymmetric around the
ML point estimate.

In general, decades of simulations of many models in the
statistical literature suggests that both bootstrap and profile
likelihood confidence intervals tend to perform better than
Wald intervals.  Neither bootstrap nor profile likelihood
intervals produce interval boundaries outside the range of
the parameter, a phenomenon which can occur with Wald
intervals (estimated survival probabilities less than zero,
etc.).  Bootstrap and profile likelihood intervals tend to
have actual coverage probabilities for moderate-sized
samples that are adequately close to the claimed coverage



probabilities, while the actual Wald coverage probabilities
tend to be too small.  Nonetheless, there are situations for
which all three can be bad.  Statistical theory gives a few
warnings:  a parameter at or near the edge of its range, a
random variable with a range that depends on an unknown
model parameter, and sparse data are situations that can
cause estimation problems.  However, statistical theory
provides no sweeping guidance for confidence intervals
across model families;  basically, each new model for each
new application has to have its confidence intervals tested
by simulation, for the conditions and sample sizes likely to
be encountered in practice.  There will never be a shortage
of topics for statistical masters degrees.


